#apc1.ode, 12-12-03. Try to fit Thornton & Toczyski's Nature Cell Biol. data # Logistic growth # Change from cell033.ode (no target) BB(Va,Vi,Ja,Ji)= Vi-Va+Ja*Vi+Ji*Va GK(Va,Vi,Ja,Ji)= 2*Ji*Va/(BB(Va,Vi,Ja,Ji)+sqrt(BB(Va,Vi,Ja,Ji)^2-4*(Vi-Va)*Ji*Va)) BCK2 = B0*MASS CLN3 = C0*Dn3*MASS/(Jn3+Dn3*MASS) SIC1T = SIC1+C2+C5+SIC1P+C2P+C5P CDC6T = CDC6+F2+F5+CDC6P+F2P+F5P RENTP = CDC14T-RENT-CDC14 NET1P =NET1T-NET1-CDC14T+CDC14 PE = ESP1T-ESP1 Vasbf= kasbf*(esbfn2*CLN2+esbfn3*(CLN3+BCK2)+esbfb5*CLB5) Vdb2 = kdb2'+kdb2"*CDH1+kdb2p*CDC20 Vdb5 = kdb5'+kdb5"*Cdc20 Vkpc1= kd1c1+kd2c1*(ec1n3*CLN3+ec1k2*BCK2+ec1n2*CLN2+ec1b2*CLB2+ec1b5*CLB5)/(Jd2c1+SIC1T) Vppc1= kppc1*CDC14 Vkpf6= kd1f6+kd2f6*(ef6n3*CLN3+ef6k2*BCK2+ef6n2*CLN2+ef6b2*CLB2+ef6b5*CLB5)/(Jd2f6+CDC6T) Vppf6= kppf6*CDC14 Vaiep= kaiep*CLB2 Vacdh= kacdh'+kacdh"*CDC14 Vicdh= kicdh'+kicdh"*(eicdhn3*CLN3+eicdhn2*CLN2+eicdhb5*CLB5+eicdhb2*CLB2) Vppnet= kppnet'+kppnet"*PPX Vkpnet=(kkpnet'+kkpnet"*CDC15)*MASS Vdpds= kd1pds'+kd2pds"*Cdc20+kd3pds"*CDH1 Vdppx= kdppx'+kdppx"*(J20ppx+Cdc20)*Jpds/(Jpds+PDS1) SBF = GK(Vasbf, kisbf'+kisbf"*CLB2, Jasbf, Jisbf) MCM1 = GK(kamcm*CLB2, kimcm, Jamcm, Jimcm) dMASS/dt = kg*MASS*(1-MASS/MAXMASS) dCLN2/dt = (ksn2'+ksn2"*SBF)*MASS-kdn2*CLN2 dCLB2/dt =(ksb2'+ksb2"*MCM1)*MASS+(kd3c1*C2P+kd3f6*F2P)+(kdib2*C2+kdif2*F2) \ -(Vdb2+kasb2*Sic1+kasf2*CDC6)*CLB2 dCLB5/dt = (ksb5'+ksb5"*SBF)*MASS+(kd3c1*C5P+kd3f6*F5P)+(kdib5*C5+kdif5*F5) \ -(Vdb5+kasb5*Sic1+kasf5*CDC6)*CLB5 dSIC1/dt =(ksc1'+ksc1"*SWI5)+(Vdb2*C2+Vdb5*C5)+(kdib2*C2+kdib5*C5)+Vppc1*SIC1P \ -(kasb2*CLB2+kasb5*CLB5+Vkpc1)*SIC1 dCDC6/dt =(ksf6'+ksf6"*SWI5+ksf6"'*SBF)+(Vdb2*F2+Vdb5*F5)+(kdif2*F2+kdif5*F5)+Vppf6*CDC6P \ -(kasf2*CLB2+kasf5*CLB5+Vkpf6)*CDC6 dC2/dt = kasb2*CLB2*SIC1+Vppc1*C2P-(kdib2+Vdb2+Vkpc1)*C2 dC5/dt = kasb5*CLB5*SIC1+Vppc1*C5P-(kdib5+Vdb5+Vkpc1)*C5 dF2/dt = kasf2*CLB2*CDC6+Vppf6*F2P-(kdif2+Vdb2+Vkpf6)*F2 dF5/dt = kasf5*CLB5*CDC6+Vppf6*F5P-(kdif5+Vdb5+Vkpf6)*F5 dSIC1P/dt=Vkpc1*SIC1-(Vppc1+kd3c1)*SIC1P+Vdb2*C2P+Vdb5*C5P dC2P/dt =Vkpc1*C2-(Vppc1+kd3c1+Vdb2)*C2P dC5P/dt =Vkpc1*C5-(Vppc1+kd3c1+Vdb5)*C5P dCDC6P/dt=Vkpf6*CDC6-(Vppf6+kd3f6)*CDC6P+Vdb2*F2P+Vdb5*F5P dF2P/dt =Vkpf6*F2-(Vppf6+kd3f6+Vdb2)*F2P dF5P/dt =Vkpf6*F5-(Vppf6+kd3f6+Vdb5)*F5P dSWI5T/dt = ksswi'+ksswi"*MCM1-kdswi*SWI5T dSWI5/dt = ksswi'+ksswi"*MCM1+kaswi*CDC14*(SWI5T-SWI5)-(kiswi*CLB2+kdswi)*SWI5 dIEP/dt = Vaiep*(1-IEP)/(Jaiep+1-IEP)-kiiep*IEP/(Jiiep+IEP) dCDC20T/dt= (ks20'+ks20"*MCM1)-kd20*CDC20T dCDC20/dt = (ka20'+ka20"*IEP)*(CDC20T-CDC20)-(Vi20+kd20)*CDC20 dCDH1T/dt = kscdh - kdcdh*CDH1T dCDH1/dt =kscdh-kdcdh*CDH1+Vacdh*(CDH1T-CDH1)/(Jacdh+CDH1T-CDH1) \ -Vicdh*CDH1/(Jicdh+CDH1) dCDC14T/dt =ks14 - kd14*CDC14T dCDC14/dt =(kdirent*RENT+kdirentp*RENTP) \ -(kasrent*NET1+kasrentp*NET1P)*CDC14 \ +ks14-kd14*CDC14+kdnet*(RENT+RENTP) dNET1T/dt = ksnet - kdnet*NET1T dNET1/dt = kdirent*RENT-kasrent*NET1*CDC14+Vppnet*NET1P-Vkpnet*NET1 \ +ksnet-kdnet*NET1+kd14*RENT dRENT/dt =-kdirent*RENT+kasrent*NET1*CDC14+Vppnet*RENTP-Vkpnet*RENT \ -(kd14+kdnet)*RENT dTEM1/dt = lte1*(TEM1T-TEM1)/(Jatem+TEM1T-TEM1)-BUB2*TEM1/(Jitem+TEM1) dCdc15/dt= (ka15'*(Tem1T-Tem1)+ka15"*Tem1+ka15p*Cdc14)*(Cdc15T-Cdc15)-ki15*Cdc15 dPPX/dt = ksppx-Vdppx*PPX dPDS1/dt = (kspds'+ks1pds"*SBF+ks2pds"*MCM1)+kdiesp*PE-(Vdpds+kasesp*ESP1)*PDS1 dESP1/dt = -kasesp*PDS1*ESP1+(kdiesp+Vdpds)*PE dORI/dt = ksori*(eorib5*CLB5+eorib2*CLB2)-kdori*ORI dBUD/dt = ksbud*(ebudn2*CLN2+ebudn3*CLN3+ebudb5*CLB5)-kdbud*BUD dSPN/dt = ksspn*CLB2/(Jspn+CLB2)-kdspn*SPN dVi20/dt = 0 dlte1/dt = 0 dBub2/dt = 0 global +1 {ORI-1} {Vi20=ki20"; Bub2=Bub2h} global +1 {SPN-1} {Vi20=ki20'; lte1=lte1h; Bub2=Bub2l} global -1 {CLB2-KEZ} {MASS=abs(MorD+f-1)*MASS; Lte1= Lte1l; BUD=0; SPN=0} global -1 {CLB2+CLB5-KEZ2} {ORI=0} aux CLB2T=CLB2+C2+F2+C2P+F2P aux CLB5T=CLB5+C5+F5+C5P+F5P aux CKIT=SIC1T+CDC6T aux SIC1T=SIC1T aux MCM1=MCM1 aux SBF=SBF param B0=0.054, C0=0.4, Dn3=1, Jn3=6 param ksn2'=0, ksn2"=0.15, kdn2=0.12 param esbfn2=2, esbfn3=10, esbfb5=2 param kasbf=0.38, kisbf'=0.6, kisbf"=8 param Jasbf=0.01, Jisbf=0.01 param ksb2'=0.00075, ksb2"=0.05, kdb2'=0.006 param kdb2"=0.38, kdb2p=0.15 param kamcm=1, kimcm=0.15, Jamcm=0.1, Jimcm=0.1 param ksb5'=0.0008, ksb5"=0.005 param kdb5'=0.01, kdb5"=0.16 param ksc1'=0.012, ksc1"=0.12 param kd1c1=0.01, kd2c1=1, Jd2c1=0.05 param ec1k2=0.03, ec1n2=0.06, ec1b5=0.5, ec1b2=0.38, ec1n3=0.3 param kasb2=50, kdib2=0.05, kasb5=50, kdib5=0.06 param kd3c1=1, kppc1=6 param ksf6'=0.024, ksf6"=0.12, ksf6"'=0.004 param kd1f6=0.01, kd2f6=1, Jd2f6=0.05 param ef6k2=0.03, ef6n2=0.06, ef6b5=0.1, ef6b2=0.55, ef6n3=0.3 param kasf2=15, kdif2=0.5, kasf5=0.01, kdif5=0.01 param kd3f6=1, kppf6=6 param ksswi'=0.005, ksswi"=0.06, kdswi=0.08, kaswi=2.2, kiswi=0.05 param kaiep=0.1, kiiep=0.15, Jaiep=0.1, Jiiep=0.1 param ks20'=0.006, ks20"=0.6, kd20=0.3 param ka20'=0.05, ka20"=0.2, ki20'=0.01, ki20"=8 param kscdh=0.01, kdcdh=0.01 param kacdh'=0.01, kacdh"=0.8, Jicdh=0.03, Jacdh=0.03 param kicdh'=0.001, kicdh"=0.08 param eicdhn2=0.4, eicdhn3=0.25, eicdhb5=8, eicdhb2=1.2 param ks14=0.2, kd14=0.1 param ksnet=0.084, kdnet=0.03 param kasrent=200, kasrentp=1, kdirent=0.5, kdirentp=2 param kppnet'=0.05, kppnet"=2.5, kkpnet'=0.01, kkpnet"=0.6 param kspds'=0, ks1pds"=0.03, ks2pds"=0.055 param kd1pds'=0.01, kd2pds"=0.8, kd3pds"=0.04 param kasesp=50, kdiesp=0.5, ESP1T=1 param ksppx=0.1, Jpds=0.04 param kdppx'=0.17, kdppx"=2, J20ppx=0.15 param ksori=2, kdori=0.06, eorib5=0.9, eorib2=0.45 param ksbud=0.2, kdbud=0.06, ebudn2=0.3, ebudn3=0.06, ebudb5=1.2 param ksspn=0.1, kdspn=0.06, Jspn=0.14 param lte1l=0.1, lte1h=1, Bub2l=0.2, Bub2h=1 param TEM1T=1, jatem=0.1, Jitem=0.1 param Cdc15T=1, ka15'=0.002, ka15"=1, ka15p=0.001, ki15=0.5 param KEZ=0.3, mdt=150, MorD=1 param kez2=0.2 param MAXMASS=30 # The following parameters specify the values we used to simulate overproduction # by GAL promoters for various genes (mdt is changed to 150 in addition). param galcln2=0.12, galclb2=0.12, galclb5=0.012, galsic1=0.12, galcdc6=0.12, galcdc20=6 param galcln3=20, galtem1=20, galcdc15=20 # The following parameters specify the fraction of activity remains in net1-ts, TAB6-1 # and Clb2-db-del. param net1ts_f=0.005, tab61_f=0.04, clb2db_f=0.075 # derived parameter f (for division of mass between mother/daughter) # to satisfy Hartwell & Ungar's experiment. kg is growth rate, # D is daughtercycle time, f is the fraction of mass given to daughter !kg=ln(2)/mdt !D=1.026/kg-32 !f=exp(-kg*D) @ Maxstore=100000, bound=2000, dt=0.1 @ Meth=Stiff, total=1000, xplot=t, yplot=MASS, xlo=0, xhi=1000, ylo=0, yhi=3 Init MASS=0.7434539198875427 Init CLN2=0.08342601358890533 Init CLB2=0.1147801578044891 Init CLB5=0.08410494029521942 Init SIC1=0.01803707145154476 Init CDC6=0.114388071000576 Init C2=0.1739573329687119 Init C5=0.09688682109117508 Init F2=0.2167218327522278 Init F5=0.0001311646337853745 Init SIC1P=0.003010560292750597 Init C2P=0.01348251756280661 Init C5P=0.007275680545717478 Init CDC6P=0.00837775319814682 Init F2P=0.01413857843726873 Init F5P=8.055226317082997e-006 Init SWI5T=0.7103575468063355 Init SWI5=0.7024384140968323 Init IEP=0.08511807024478912 Init CDC20T=1.855605721473694 Init CDC20=0.4204259514808655 Init CDH1T=1 Init CDH1=0.994186282157898 Init CDC14T=2 Init CDC14=0.5468657612800598 Init NET1T=2.799999952316284 Init NET1=0.009161100722849369 Init RENT=0.9802321195602417 Init TEM1=0.8777932524681091 Init CDC15=0.6525858640670776 Init PPX=0.08033313602209091 Init PDS1=0.002407065592706204 Init ESP1=0.8274482488632202 Init ORI=0.001062883646227419 Init BUD=0.02198665030300617 Init SPN=0.04054306820034981 Init VI20=0.009999999776482582 Init LTE1=0.1000000014901161 Init BUB2=0.2000000029802322 done