Modeling the Budding Yeast Cell Cycle

References

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

A | top
Alexandru, G., Zachariae, W., Schleiffer, A. and Nasmyth, K. (1999). Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J. 18:2707-2721.
[Abstract] [Article]
Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M.-A. and Nasmyth, K. (2001). Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105:459-472.
[Abstract] [Article]
Amon, A., Tyers, M., Futcher, B. and Nasmyth, K. (1993). Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993-1007.
[Abstract] [Article]
Amon, A., Irniger, S. and Nasmyth, K. (1994). Closing the cell cycle circle in yeast: G2 cyclin proteolysis initiated at mitosis persists until the activation of G1 cyclins in the next cycle. Cell 77:1037-1050.
[Abstract] [Article]
Amon, A. (1997). Regulation of B-type cyclin proteolysis by Cdc28-associated kinases in budding yeast. EMBO J. 16:2693-2702.
[Abstract] [Article]
Amon, A. (1999). The spindle checkpoint. Curr. Opin. Genet. Dev. 9:69-75.
[Abstract] [Article]
Archambault, V., Li, C.X., Tackett, A.J., Wasch, R., Chait, B.T., Rout, M.P. and Cross, F.R. (2003). Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. Mol. Biol. Cell 14:4592-4604.
[Abstract] [Article]
Asakawa, K., Yoshida, S., Otake, F. and Toh-e, A. (2001). A novel functional domain of Cdc15 kinase is required for its interaction with Tem1 GTPase in Saccharomyces cerevisiae . Genetics 157:1437-1450.
[Abstract] [Article]
Ayte, J., Schweitzer, C., Zarzov, P., Nurse, P. and DeCaprio J.A. (2001). Feedback regulation of the MBF transcription factor by cyclin Cig2. Nat. Cell Biol. 3:1043-1050.
[Abstract] [Article]
B | top
Bardin, A.J., Visintin, R. and Amon, A. (2000). A mechanism for coupling exit from mitosis to partitioning of the nucleus. Cell 102:21-31.
[Abstract] [Article]
Bardin, A. and Amon, A. (2001). Men and sin: what's the difference? Nat. Rev. Mol. Cell Biol. 2:815-826.
[Abstract] [Article]
Barral, Y., Jentsch, S. and Mann, C. (1995). G1 cyclin turnover and nutrient uptake are controlled by a common pathway in yeast. Genes Dev. 9:399-409.
[Abstract] [Article]
Baumer, M., Braus, G.H. and Irniger, S. (2000). Two different models of cyclin Clb2 proteolysis during mitosis in Saccharomyces cerevisiae. FEBS Lett 468:142-148.
[Abstract] [Article]
Botchan, M. (1996). Coordinating DNA replication with cell division: Current status of the licensing concept. Proc. Natl. Acad. Sci. USA 93:9997-10000.
[Abstract] [Article]
Brewer, B.J., Chlebowicz-Sledziewska, E., Pipo Molo and Fangman, W.L. (1984). Cell cycle phases in the unequal mother/daughter cell cycles of Saccharomyces cerevisiae. Mol. Cell. Biol. 4:2529-2531.
[Abstract] [Article]
Bueno, A. and Russell, P. (1992). Dual function of CDC6: a yeast protein required for DNA replication also inhibits nuclear division. EMBO J. 11:2167-2176.
[Abstract] [Article]
C | top
Calzada, A., Sacristan, M., Sanchez, E. and Bueno, A. (2001). Cdc6 cooperates with Sic1 and Hct1 to inactivate mitotic cyclin-dependent kinases. Nature 412:355-358.
[Abstract] [Article]
Chen, R.H., Waters, J.C., Salmon, E.D. and Murray A.W. (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science 274:242-246.
[Abstract] [Article]
Chen, R.H., Brady, D.M., Smith, D., Murray, A.W. and Hardwick, K.G. (1999). The spindle checkpoint of budding yeast depends on a tight complex between the Mad1 and Mad2 proteins. Mol. Biol. Cell 10:2607-2618.
[Abstract] [Article]
Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novak, B. and Tyson, J.J. (2000). Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11:369-391.
[Abstract] [Article]
Chen, K.C., Calzone, L., Csikasz-Nagy, A., Cross, F.R., Novak, B. and Tyson, J.J. (2004). Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cell 15:3841-3862.
[Abstract] [Article]
Cheng, L., Hunke, L. and Hardy, C.F.J. (1998). Cell cycle regulation of the Saccharomyces cerevisiae polo-like kinase Cdc5p. Mol. Cell. Biol. 18:7360-7370.
[Abstract] [Article]
Cid, V.J., Jimenez, J., Molina, M., Sanchez, M., Nombela, C.and Thorner, J.W. (2002). Orchestrating the cell cycle in yeast: sequential localization of key mitotic regulators at the spindle pole and the bud neck. Microbiology 148: 2647-2659.
[Abstract] [Article]
Ciliberto, A., Novak, B. and Tyson J.J. (2003). Mathematical model of the morphogenesis checkpoint in budding yeast. J. Cell Biol. 163:1243-1254.
[Abstract] [Article]
Ciosk, R., Zachariae, W., Michaelis, C., Shevchenko, A., Mann, M. and Nasmyth, K. (1998). An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93:1067-1076.
[Abstract] [Article]
Cohen-Fix, O., Peters, J.M., Kirschner, M.W. and Koshland, D. (1996). Anaphase initiation in Saccharomyces cerevisiae is controlled by the APC-dependent degradation of the anaphase inhibitor Pds1p. Genes Dev. 10:3081-3093.
[Abstract] [Article]
Cohen-Fix, O. and Koshland, D. (1999). Pds1p of budding yeast has dual roles: inhibition of anaphase initiation and regulation of mitotic exit. Genes Dev. 13:1950-1959.
[Abstract] [Article]
Cross, F.R. (1988). DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol Cell. Biol. 18:4675-4684.
[Abstract] [Article]
Cross, F.R. (1990) Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-1 arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10: 6482-6490.
[Abstract] [Article]
Cross, F.R. and Tinkelenberg, A.H. (1991). A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875-883.
[Abstract] [Article]
Cross, F.R., Archambault, V., Miller, M., Klovstad, M. (2002). Testing a mathematical model of the yeast cell cycle. Mol. Biol. Cell 13:52-70.
[Abstract] [Article]
Cross, F.R. (2003). Two redundant oscillatory mechanisms in the yeast cell cycle. Dev. Cell 4:741-752.
[Abstract] [Article]
D | top
Dahmann, C., Diffley, J.F.X. and Nasmyth, K. (1995). S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state. Curr. Biol. 5:1257-1269.
[Abstract] [Article]
Deshaies, R.J., Chau, V., Kirschner, M. (1995). Ubiquitination of the G1 cyclin Cln2p by a Cdc34p-dependent pathway. EMBO J. 14:303-312.
[Abstract] [Article]
Di Como, C.J., Chang, H. and Arndt, K.T. (1995). Activation of CLN1 and CLN2 G1 cyclin gene expression by BCK2. Mol. Cell. Biol. 15:1835-1846.
[Abstract] [Article]
Dirick, L., Bohm, T. and Nasmyth, K. (1995). Roles and regulation of Cln/Cdc28 kinases at the start of the cell cycle of Saccharomyces cerevisiae. EMBO J. 14:4803-4813.
[Abstract] [Article]
Donovan, J.D., Toyn, J.H., Johnson, A.L. and Johnston, L.H. (1994). p40SDB25, a putative Cdk inhibitor, has a role in M/G1 transition in Saccharomyces cerevisiae. Genes Dev. 8:1640-1653.
[Abstract] [Article]
Donovan, S., Harwood, J., Drury, L.S. and Diffley, J.F.X. (1997). Cdc6p-dependent loading of Mcm proteins onto pre-replicative chromatin in budding yeast. Proc. Natl. Acad. Sci. USA 94:5611-5616.
[Abstract] [Article]
Drury, L.S., Perkins, S. and Diffley, J.F.X. (1997). The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J. 16:5966-5976.
[Abstract] [Article]
E | top
Elledge, S.J. (1998). Mitotic arrest: Mad2 prevents sleepy from waking up the APC. Science 279:999-1000.
[Abstract] [Article]
Elsasser, S., Lou, F., Wang, B., Campbell, J.L. and Jong, A. (1996). Interaction between yeast Cdc6 protein and B-type cyclin/Cdc28 kinases. Mol. Biol. Cell 7:1723-1735.
[Abstract] [Article]
Elsasser, S., Chi, Y., Yang, P. and Campbell, J.L. (1999). Phosphorylation controls timing of Cdc6p destruction: a biochemical analysis. Mol. Biol. Cell 10:3263-3267.
[Abstract] [Article]
Epstein, C.B. and Cross, F.R. (1992). CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6:1695-1706.
[Abstract] [Article]
Epstein, C.B. and Cross, F.R. (1994). Genes that can bypass the CLN requirement for Saccharomyces cerevisiae cell cycle START. Mol. Cell. Biol.14:2041-2047.
[Abstract] [Article]
F | top
Fesquet, D., Fitzpatrick, P J., Johnson, A.L., Kramer, K.M., Toyn, J.H. and Johnston, L.H. (1999). A Bub2p-dependent spindle checkpoint pathway regulates the Dbf2p kinase in budding yeast. EMBO J 18:2424-2434.
[Abstract] [Article]
Fitzpatrick, P.J., Toyn, J.H., Millar, J.B. and Johnston, L.H. (1998). DNA replication is completed in Saccharomyces cerevisiae cells that lack functional Cdc14, a dual-specificity protein phosphatase. Mol. Gen. Genet. 258:437-441.
[Abstract] [Article]
Fraschini, R., Formenti, E., Lucchini, G. and Piatti, S. (1999). Budding yeast Bub2 is localized at spindle pole bodies and activates the mitotic checkpoint via different pathway from Mad2. J. Cell Biol. 31:979-991.
[Abstract] [Article]
G | top
Gardner, R.D. and Burke, D. J. (2000). The spindle checkpoint; two transitions, two pathways. Trends Cell Biol. 10:154-158.
[Abstract] [Article]
Geymonat, M., Spanos, A., Walker, P.A., Johnston, L.H. and Sedgwick, S.G. (2003). In vitro regulation of budding yeast Bfa1/Bub2 GAP activity by Cdc5. J. Biol. Chem. 278:14591-14594.
[Abstract] [Article]
Giaever, G., Chu, A.M., Ni, L., Connelly, C., Riles, L., Veronneau, S. et al. (2002). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418:387-391.
[Abstract] [Article]
Grandin, N., de Almeida, A., and Charbonneau, M. (1998). The Cdc14 phosphatase is functionally associated with the Dbf2 protein kinase in Saccharomyces cerevisiae. Mol. Gen. Genet. 258:104-116.
[Abstract] [Article]
Guacci, V., Koshland, D. and Strunnikov, A. (1997). A direct link between sister chromatid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91:47-57.
[Abstract] [Article]
H | top
Hoyt, M.A., Trotis, L. and Roberts, B.T. (1991). Saccharomyces cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell 66:507-517.
[Abstract] [Article]
Hoyt, M. A. (2000). Exit from mitosis: spindle pole power. Cell 102:267-270.
[Abstract] [Article]
Hu, F., Wang, Y., Liu, D., Li, Y., Qin, J., and Elledge, S. (2001). Regulation of the Bub2/Bfa1 GAP complex by Cdc5 and cell cycle checkpoints. Cell 107:655-665.
[Abstract] [Article]
Hwang, L.H., Lau, L.F., Smith, D.L., Mistrot, C.A., Hardwick, K.G., Hwang, E.S., Amon, A. and Murray, A.W. (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science 279:1041-1044.
[Abstract] [Article]
I | top
Irniger, S., Piatti, S., Michaelis, C. and Nasmyth, K. (1995). Genes involved in sister chromatid separation are needed for B-type cyclin proteolysis in budding yeast. Cell 81:269-278.
[Abstract] [Article]
Irniger, S. and Nasmyth, K. (1997). The anaphase-promoting complex is required in G1 arrested yeast cells to inhibit B-type cyclin accumulation and to prevent uncontrolled entry into S-phase. J. Cell Sci. 110:1523-1531.
[Abstract] [Article]
J | top
Jacobson, M.D., Gray, S., Yuste-Rojas, M. and Cross, F.R. (2000). Testing cyclin specificity in the exit from mitosis. Mol. Cell. Biol. 20:4483-4493.
[Abstract] [Article]
Jaspersen, S.L., Charles, J.F., Tinker-Kulberg, R.L., and Morgan, D.O. (1998). A late mitotic regulatory network controlling cyclin destruction in Saccharomyces cerevisiae. Mol. Biol. Cell 9:2803-2817.
[Abstract] [Article]
Jaspersen, S.L., Charles, J.F. and Morgan, D.O. (1999). Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr. Biol. 11:227-236.
[Abstract] [Article]
Jaspersen, S.L. and Morgan, D.O. (2000). Cdc14 activates Cdc15 to promote mitotic exit in budding yeast. Curr. Biol. 10:615-618.
[Abstract] [Article]
Jorgensen, P., Nishikawa, J.L., Breitkreutz, B.J. and Tyers, M. (2002). Systematic identification of pathways that couple cell growth and division in yeast. Science 297:395-400.
[Abstract] [Article]
K | top
Knapp, D., Bhoite, L., Stillman, D.J. and Nasmyth, K. (1996). The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40Sic1. Mol. Cell. Biol. 16:5701-5707.
[Abstract] [Article]
Koch, C., Schleiffer, A., Ammerer, G. and Nasmyth, K. (1996). Switching transcription on and off during the yeast cell cycle: Cln/Cdc28 kinases activate bound transcription factor SBF (Swi4/Swi6) at Start, whereas Clb/Cdc28 kinase displace it from the promoter in G2. Genes Dev. 10:129-141.
[Abstract] [Article]
Kotani, S., Tugendreich, S., Fujii, M., Jorgensen, P.-M., Watanabe, N., Hoog, C., Heiter, P. and Todokoro, K. (1998). PKA and MPF-activated Polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol. Cell 1:371-380.
[Abstract] [Article]
Krishnan, R., Pangilinan, F., Lee, C. and Spencer, F. (2000). Saccharomyces cerevisiae BUB2 prevents mitotic exit in response to both spindle and kinetochore damage. Genetics 156:489-500.
[Abstract] [Article]
L | top
Lanker, S., Valdivieso, M.H. and Wittenberg, C. (1996). Rapid degradation of the G1 cyclin Cln2 induced by CDK-dependent phosphorylation. Science 271:1597-1601.
[Abstract] [Article]
Lee, S.E., Frenz, L.M., Wells, N J., Johnson, A.L. and Johnston, L. H. (2001a). Order of function of the budding yeast mitotic exit-network proteins Tem1, Cdc15, Mob1, Dbf2, and Cdc5. Curr. Biol. 11:784-788.
[Abstract] [Article]
Lee, S.E., Jensen, S., Frenz, L. M., Johnson, A.L., Fesquet, D. and Johnston, L.H. (2001b). The Bub2-dependent mitotic pathway in yeast acts every cell cycle and regulates cytokinesis. J. Cell Sci. 114:2345-2354.
[Abstract] [Article]
Lengronne, A. and Schwob, E. (2002). The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G1. Mol. Cell 9:1067-1078.
[Abstract] [Article]
Lew, D.J. (2000). Cell-cycle checkpoints that ensure coordination between nuclear and cytoplasmic events in Saccharomyces cerevisiae. Curr. Opin. Genet. Dev. 10:47-53.
[Abstract] [Article]
Li, R. and Murray, A.W. (1991). Feedback control of mitosis in budding yeast. Cell 66:519-531.
[Abstract] [Article]
Li, Y., Gorbea, C., Mahaffey, D., Reichsteiner, M. and Benezra, R. (1997). MAD2 associates with the cyclosome/anaphase-promoting complex and inhibits its activity. Proc. Natl. Acad. Sci. USA 94:12431-12436.
[Abstract] [Article]
Li, R. (1999). Bifurcation of the mitotic checkpoint pathway in budding yeast. Proc. Natl. Acad. Sci. USA 96:4989-4994.
[Abstract] [Article]
Liang, C. and Stillman, B. (1997). Persistent initiation of DNA replication and chromatin-bound MCM proteins during the cell cycle in cdc6 mutants.Genes Dev. 24:3375-3386.
[Abstract] [Article]
Lim, H.H., Goh, P.-Y. and Surana, U. (1998). Cdc20 is essential for the cyclosome-mediated proteolysis of both Pds1 and Clb2 during M phase in budding yeast. Curr. Biol. 8:231-234.
[Abstract] [Article]
Lord, P. G. and Wheals, A. E. (1980). Asymmetrical division of Saccharomyces cerevisiae. J. Bacteriol. 142:808-818.
[Abstract] [Article]
M | top
MacKay, V., Mai, B., Waters, L. and Breeden, L.L. (2001). Early cell cycle box-mediated transcription of CLN3 and SWI4 contributes to the proper timing of the G1-to-S transition in budding yeast. Mol. Cell. Biol. 21:4140-4148.
[Abstract] [Article]
Maher, M., Cong, F., Kindelberger, D., Nasmyth, K. and Dalton, S. (1995). Cell cycle-regulated transcription of the CLB2 gene is dependent on Mcm1 and a ternary complex factor. Mol. Cell. Biol. 15:3129-3137.
[Abstract] [Article]
Mendenhall, M.D. (1993). An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259:216-219.
[Abstract] [Article]
Michaelis, C., Ciosk, R. and Nasmyth, K. (1997). Cohesions: chromosomal proteins that prevent premature separation of sister chromatids. Cell 91:35-45.
[Abstract] [Article]
Morgan, D.O. (1999). Regulation of the APC and the exit from mitosis. Nat. Cell Biol. 1:E47-E53.
[Abstract] [Article]
N | top
Nash, R., Tokiwa, G., Anand, S., Erickson, K. and Futcher, A.B. (1988). The WHI1+ gene of Saccharomyces cerevisiae tethers cell division to cell size and is a cyclin homolog. EMBO J. 7:4335-4346.
[Abstract] [Article]
Nasmyth, K., Adolf, G., Lydall, D., and Seddon, A. (1990). The identification of a second cell cycle control on the HO promotor in yeast: cell cycle regulator of SWI5 nuclear entry. Cell 62:631-647.
[Abstract] [Article]
Nasmyth, K. and Dirick, L. (1991). The Role of SWI4 and SWI6 in the activity of G1 cyclins in yeast. Cell 66:995-1013.
[Abstract] [Article]
Nasmyth, K. (1996). At the heart of the budding yeast cell cycle. Trends Genet. 12:405-412.
[Abstract] [Article]
Nasmyth, K., Peters, J.-M. and Uhlmann, F. (2000). Splitting the chromosome: cutting the ties that bind sister chromatids. Science 288:1379-1384.
[Abstract] [Article]
Nasmyth, K. (2001). Disseminating the genome: joining, resolving and separating sister chromatids during mitosis and meiosis. Annu. Rev. Genet. 35:673-745.
[Abstract] [Article]
Nguyen, V.Q., Co, C. and Li, J.J. (2001). Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411:1068-1073.
[Abstract] [Article]
Nugroho, T.T. and Mendenhall, M.D. (1994). An inhibitor of yeast cyclin-dependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol. Cell. Biol. 14:3320-3328.
[Abstract] [Article]
P | top
Pereira, G., Hofken, T., Grindlay, J., Manson, C. and Shiebel, E. (2000). The Bub2p spindle checkpoint links nuclear migration with mitotic exit. Mol. Cell 6:1-10.
[Abstract] [Article]
Pereira, G., Manson, C., Grindlay, J. and Schiebel, E. (2002). Regulation of the Bfa1p-Bub2p complex at spindle pole bodies by the cell cycle phosphatase Cdc14p. J. Cell Biol. 157:367-379.
[Abstract] [Article]
Perkins, G., Drury, L.S. and Diffley, J.F.X. (2001). Separate SCF(CDC4) recognition elements target Cdc6 for proteolysis in S phase and mitosis. EMBO J. 20:4836-4845.
[Abstract] [Article]
Pfleger, C.M. and Kirschner, M.W. (2000). The KEN box: an APC recognition signal distinct from the D box targeted by Cdh1. Genes Dev. 14:655-665.
[Abstract] [Article]
Piatti, S., Lengauer, C. and Nasmyth, K. (1995). Cdc6 is an unstable protein whose de novo synthesis in G1 is important for the onset of S phase and for preventing a 'reductional' anaphase in the budding yeast Saccharomyces cerevisiae. EMBO J. 14:3788-3799.
[Abstract] [Article]
Piatti, S., Bohm, T., Cocker, J.H., Diffley, J.F.X. and Nasmyth, K. (1996). Activation of S-phase-promoting CDKs in late G1 defines a "point of no return" after which Cdc6 synthesis cannot promote DNA replication in yeast. Genes Dev. 10:1516-1531.
[Abstract] [Article]
Pic-Taylor, A., Darieva, Z., Morgan, B.A., and Sharrocks, A.D. (2004). Regulation of cell cycle-specific gene expression through cyclin-dependent kinase-mediated phosphorylation of the forkhead transcription factor Fkh2p. Mol. Cell Biol. 24, 10036-10046.
[Abstract] [Article]
Prinz, S., Hwang, E.S., Visintin, R. and Amon, A. (1998). The regulation of Cdc20 proteolysis reveals a role for the APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr. Biol. 8:750-760.
[Abstract] [Article]
Prinz, S. and Amon, A. (1999). Dual control of mitotic exit. Nature 402:133-135.
[Abstract] [Article]
R | top
Richardson, H., Wittenberg, C., Cross, F.R. and Reed, S.I. (1989). An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127-1133.
[Abstract] [Article]
Richardson, H., Lew, D.J., Henze, M., Sugimoto, K. and Reed, S. I. (1992). Cyclin-B homologs in Saccharomyces cerevisiae function in S phase and in G2. Genes Dev. 6:2021-2034.
[Abstract] [Article]
Ross, K. E., and Cohen-Fix, O. (2003). The role of Cdh1p in maintaining genomic stability in budding yeast. Genetics 165:489-503.
[Abstract] [Article]
Rudner, A.D., Hardwick, K.J. and Murray, A.W. (2000a). Cdc28 activates exit from mitosis in budding yeast. J. Cell Biol. 149:1361-1376.
[Abstract] [Article]
Rudner, A.D. and Murray, A.W. (2000b). Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149:1377-1390.
[Abstract] [Article]
S | top
Salama, S.R., Hendricks, K.B. and Thorner, J. (1994). G1 cyclin degradation: the PEST motif of yeast Cln2 is necessary, but not sufficient, for rapid protein turnover. Mol. Cell. Biol. 14:7953-7966.
[Abstract] [Article]
Sanchez, Y., Bachant, J., Wang, H., Hu, F., Liu, D., Tetzlaff, M. and Elledge, S.J. (1999). Control of DNA damage checkpoint by Chk1 and Rad53 protein kinases through distinct mechanisms. Science 286:1166-1171.
[Abstract] [Article]
Saunders, W. (2002). The FEAR factor. Mol. Cell 9:207-209.
[Abstract] [Article]
Schneider, B.L., Yang, Q.-H. and Futcher, A.B. (1996). Linkage of replication to Start by the Cdk inhibitor Sic1. Science 272:560-562.
[Abstract] [Article]
Schwab, M., Lutum, A.S. and Seufert, W. (1997). Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90:683-693.
[Abstract] [Article]
Schwob, E. and Nasmyth, K.(1993). CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160-1175.
[Abstract] [Article]
Schwob, E., Bohm, T., Mendenhall, M.D. and Nasmyth, K. (1994). The B-type cyclin kinase inhibitor p40sic1 controls the G1 to S transition in S. cerevisiae. Cell 79:233-244.
[Abstract] [Article]
Sethi, N., Monteagudo, M.C., Koshland, D., Hogan, E. and Burke, D.J. (1991). The CDC20 gene product of Saccharomyces cerevisiae, a beta-transducin homolog, is required for a subset of microtubule-dependent cellular processes. Mol. Cell. Biol. 11:5592-5602.
[Abstract] [Article]
Seufert, W., Futcher, B. and Jentsch, S. (1995). Role of a ubiquitin-conjugating enzyme in degradation of S- and M-phase cyclins. Nature 373:78-81.
[Abstract] [Article]
Shah, J.V. and Cleveland, D.W. (2000).Waiting for anaphase: Mad2 and the spindle assembly checkpoint. Cell 103: 997-1000.
[Abstract] [Article]
Shirayama, M., Matsui, Y., Tanaka, K. and Toh-e, A. (1994a). Isolation of a CDC25 family gene, MSI2/LTE1, as a multicopy suppressor of ira1. Yeast 10:451-461.
[Abstract] [Article]
Shirayama, M., Matsui, Y. and Toh-e, A. (1994b). The yeast TEM1 gene, which encodes a GTP-binding protein, is involved in termination of M phase. Mol. Cell. Biol. 14:7476-7482.
[Abstract] [Article]
Shirayama, M., Matsui, Y. and Toh-e, A. (1996). Dominant mutant alleles of yeast protein kinase gene CDC15 suppress the Lte1 defect in termination of M phase and genetically interact with CDC14. Mol. Gen. Genet. 251:176-185.
[Abstract] [Article]
Shirayama, M., Zachariae, W., Ciosk, R. and Nasmyth, K. (1998). The Polo-like kinase Cdc5p and the WD-repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J. 17:1336-1349.
[Abstract] [Article]
Shirayama, M., Toth, A., Galova, M. and Nasmyth, K. (1999). APC(CDC20) promotes exit from mitosis by destroying the anaphase inhibitor Pds1 and cyclin Clb5. Nature 402:203-207.
[Abstract] [Article]
Shou, W., Seol, J.H., Shevchenko, A., Baskerville, C., Moazed, D., Chen, Z.W.S., Jang, J., Shevchenko, A., Charbonneau, H. and Deshaies, R.J. (1999). Exit from mitosis is triggered by Tem1-dependent release of the protein phosphatase Cdc14 from nucleolar RENT complex. Cell 97:233-244.
[Abstract] [Article]
Shou, W., Sakamoto, KM., Keener, J., Morimoto, K.W., Traverso, E.E., Azzam, R., Hoppe, G.J., Feldman, R.M., DeModena, J., Moazed, D., Charbonneau, H., Nomura, M. and Deshaies, R.J. (2001). Net1 stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit. Mol. Cell 8:45-55.
[Abstract] [Article]
Shou, W., Azzam, R., Chen, S.L., Huddleston, M.J., Baskerville, C., Charbonneau, H., Annan, R.S., Carr, S.A. and Deshaies, R. J. (2002a). Cdc5 influences phosphorylation of Net1 and disassembly of the RENT complex. BMC Mol. Biol. 3:3.
[Abstract] [Article]
Shou, W, and Deshaies, R. (2002b). Multiple telophase arrest bypassed (tab) mutants alleviate the essential requirement for Cdc15 in exit from mitosis in S. cerevisiae. BMC Genet. 3:4.
[Abstract] [Article]
Simon, I., Barnett, J., Hannett, N., Harbison, C.T., Rinaldi, N. J., Volkert, T.L., Wyrick, J.J., Zeitlinger, J., Gifford, D.K., Jaakkola, T.S. and Young, R.A. (2001). Serial regulation of transcriptional regulators in the yeast cell cycle. Cell 106: 697-708.
[Abstract] [Article]
Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Botstein, D. and Futcher, B. (1998). Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9:3273-3297.
[Abstract] [Article]
Stegmeier, F., Visintin, R. and Amon, A.. (2002). Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108:207-220.
[Abstract] [Article]
Stuart, D. and Wittenberg, C. (1995). CLN3, not positive feedback, determines the timing of CLN2 transcription in cycling cells. Genes Dev. 9:2780-2794.
[Abstract] [Article]
Surana, U., Robitsch, H., Price, C., Schuster, T., Fitch, I., Futcher, A.B. and Nasmyth, K. (1991). The role of CDC28 and cyclins during mitosis in the budding yeast S. cerevisiae. Cell 65:145-161.
[Abstract] [Article]
Surana, U., Amon, A., Dowzer, C., McGrew, J., Byers, B. and Nasmyth, K. (1993). Destruction of the CDC28/CLB mitotic kinase is not required for the metaphase to anaphase transition in budding yeast. EMBO J. 12:1969-1978.
[Abstract] [Article]
T | top
Tanaka, T., Knapp, D. and Nasmyth, K. (1997). Loading of an Mcm protein onto DNA replication origins is regulated by Cdc6p and CDKs. Cell 90:649-660.
[Abstract] [Article]
Tavormina, P.A. and Burke, D.J. (1998). Cell cycle arrest in cdc20 mutants of Saccharomyces cerevisiae is independent of Ndc10p and kinetochore function but requires a subset of spindle checkpoint genes. Genetics 148:1701-1713.
[Abstract] [Article]
Taylor, G. S., Liu, Y., Baskerville, C., and Charbonneau, H. (1997). The activity of Cdc14p, an oligomeric dual specificity protein phosphatase from Saccharomyces cerevisiae, is required for cell cycle progression. J. Biol. Chem. 272:24054-24063.
[Abstract] [Article]
Taylor, S.S. (1999). Chromosome segregation: dual control ensures fidelity. Curr. Biol. 9:R562-R564.
[Abstract] [Article]
Thornton, B.R. and Toczyski, D.P. (2003). Securin and B-cyclin/CDK are the only essential targets of the APC. Nat. Cell Biol. 5:1090-1094.
[Abstract] [Article]
Thornton, B. R., Chen, K.C., Cross, F.R., Tyson, J.J., and Toczyski, D.P. (2004). Cycling without the cyclosome: modeling a yeast strain lacking the APC. Cell Cycle 3: 629-633.
[Abstract] [Article]
Tinker-Kulberg, R.L. and Morgan, D.O. (1999). Pds1 and Esp1 control both anaphase and mitotic exit in normal cells and after DNA damage. Genes Dev. 13:1936-1949.
[Abstract] [Article]
Toyn, J.H., Johnson, A.L., Donovan, J.D., Toone, W.M., Johnston, L.H. (1997). The Swi5 transcription factor of Saccharomyces cerevisiae has a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics 145:85-96.
[Abstract] [Article]
Tyers, M., Tokiwa, G., Nash, R. and Futcher, B. (1992). The Cln3-Cdc28 kinase complex of S. cerevisiae is regulated by proteolysis and phosphorylation. EMBO J. 11:1773-1784.
[Abstract] [Article]
Tyers, M., Tokiwa, G. and Futcher B. (1993). Comparison of the Saccharomyces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12:1955-68.
[Abstract] [Article]
Tyers, M. (1996). The cyclin-dependent kinase inhibitor p40SIC1 imposes the requirement for Cln G1 cyclin function at Start. Proc. Natl. Acad. Sci. USA 93:7772-7776.
[Abstract] [Article]
Tyson, J. J., Novak, B., Chen, K. and Val, J. (1995). Checkpoints in the cell cycle from a modeler's perspective. Prog. Cell Cycle Res.1:1-8.
[Abstract] [Article]
Tyson, J.J., Chen, K. and Novak, B. (2001). Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2:908-916.
[Abstract] [Article]
U | top
Uhlmann, F., Lottspeich, F. and Nasmyth, K. (1999). Sister-chromatid separation at anaphase onset is promoted by cleavage of the cohesin subunit Scc1. Nature 400:37-42.
[Abstract] [Article]
V | top
Verma, R., Annan, R.S., Huddleston, M.J., Carr, S.A., Reynard, G. and Deshaies, R.J. (1997a). Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278:455-460.
[Abstract] [Article]
Verma, R., Feldman, R.M.R. and Deshaies, R.J. (1997b). Sic1 is ubiquinated in vitro by a pathway that requires CDC4, CDC34 and Cyclin/CDK activities. Mol. Biol. Cell 8:1427-1437.
[Abstract] [Article]
Visintin, R., Prinz, S. and Amon, A. (1997). CDC20 and CDH1: a family of substrate-specific activators of APC-dependent proteolysis. Science 278:460-463.
[Abstract] [Article]
Visintin, R., Craig, K., Hwang, E.S., Prinz, S., Tyers, M. and Amon, A. (1998). The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk-dependent phosphorylation. Mol. Cell 2:709-718.
[Abstract] [Article]
Visintin, R., Hwang, E.S., Amon, A. (1999). Cfi1 prevents premature exit from mitosis by anchoring Cdc14 phosphatase in the nucleolus. Nature 398:818-823.
[Abstract] [Article]
Visintin, R., Stegmeier, F. and Amon, A. (2003). The role of the polo kinase Cdc5 in controlling Cdc14 localization. Mol. Biol. Cell 14:4486-4498.
[Abstract] [Article]
W | top
Wasch, R. and Cross, F. (2002). APC-dependent proteolysis of the mitotic cyclin Clb2 is essential for mitotic exit. Nature 418:556-562.
[Abstract] [Article]
Wijnen, H., and Futcher, B. (1999) Genetic analysis of the shared role of CLN3 and BCK2 at the G1-S transition in Saccharomyces cerevisiae. Genetics 153:1131-1143.
[Abstract] [Article]
Willems, A. R., Lanker, S., Patton, E.E., Craig, K.L., Nason, T.F., Mathias, N., Kobayashi, R., Wittenberg, C. and Tyers, M. (1996). Cdc53 targets phosphorylated G1 cyclins for degradation by the ubiquitin proteolytic pathway. Cell 86:453-463.
[Abstract] [Article]
Wittenberg, C., Sugimoto, K. and Reed, S I. (1990). G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with p34CDC28 protein kinase. Cell 62:225-237.
[Abstract] [Article]
Y | top
Yamamoto, A., Guacci, V. and Koshland, D. (1996). Pds1p, an inhibitor of anaphase in budding yeast, plays a critical role in the APC and checkpoint pathway(s). J. Cell Biol. 133:99-110.
[Abstract] [Article]
Yanagida, M. (2000). Cell cycle mechanisms of sister chromatid separation; roles of Cut1/separin and Cut2/securin. Genes Cells 5:1-8.
[Abstract] [Article]
Yeong, F.M., Lim, H.H., Padmashree, C.G. and Surana, U. (2000). Exit of mitosis in budding yeast: biphasic inactivation of the Cdc28-Clb2 mitotic kinase and the role of Cdc20. Mol. Cell 5:501-511.
[Abstract] [Article]
Yoshida, S. and Toh-e, A. (2002a). Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus. Biochim. Biophys. Res. Comm. 294:687-691.
[Abstract] [Article]
Yoshida, S., Asakawa, K. and Toh-e, A. (2002b). Mitotic exit network controls the localization of Cdc14 to the spindle pole body in Saccharomyces cerevisiae. Curr. Biol. 12:944-950.
[Abstract] [Article]
Yuste-Rojas, M. and Cross, F.R. (2000). Mutations in CDC14 result in high sensitivity to cyclin gene dosage in Saccharomyces cerevisiae. Mol. Gen. Genet. 263:60-72.
[Abstract] [Article]
Z | top
Zachariae, W., Schwab, M., Nasmyth, K. and Seufert, W. (1998). Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282:1721-1724.
[Abstract] [Article]
Zachariae, W. and Nasmyth, K. (1999). Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev. 13:2039-2058.
[Abstract] [Article]
Zachariae, W. (1999). Progress into and out of mitosis. Curr. Opin. Cell Biol. 11:708-716.
[Abstract] [Article]
Zhou, C. and Jong, A. (1990). CDC6 mRNA fluctuates periodically in the yeast cell cycle. J. Biol. Chem. 265:19904-19909.
[Abstract] [Article]
Zhu, G., Spellman, P. T., Volpe, T., Brown, P. O., Botstein, D., Davis, T. N. and Futcher, B. (2000). Two yeast forkhead genes regulate the cell cycle and pseudohyphal growth. Nature 406:90-94.
[Abstract] [Article]